Advanced Metering Implementation

Addressing Security Risks in DoD Applications

Mr. Peter Virag, Weston Solutions Mr. Matt Franz, SAIC

Background

- Weston Solutions awarded design/build task orders for advanced metering for Navy District Washington and Quantico MCB
 - Approximately 1,200 electric meters, 300 mechanical, and 270 data recorders
 - Wired and Wireless network
 - Data Acquisition System
 - System must meet all DoD Information Assurance Requirements
- Team
 - SAIC
 - Trimark Associates
 - Energy ICT
 - Electrical Testing Specialists

AMI/Smart Grid Security Risks

- Well known application, operating system, and network security vulnerabilities apply to AMI
- Concerns with integrating/sharing AMI network with existing networks
- Sensitivity to disclosure of energy related data, especially for research and operational activities
- Physical security of meters and communications equipment
- Need to balance availability, function, access controls, cost, and usability!
- Partnership approach essential to understand security concerns of client - each case will likely be different

AMI Process: 4 Main Efforts

- Survey and design of physical solution
 - Meter locations
 - Communications Solution
 - Wireless and Wire Network Survey and Design
 - Use of Available Wired and Wireless Network
 - Network addressing and segmentation
 - Physical Limitations
- Customization and Hardening of DAS Solution
 - Customize to meet client data needs
 - Harden to meet Information Assurance requirement
- Security Architecture & System Accreditation
 - Integrated throughout process
 - Involves all hardware/software components and communication flows
 - Required involvement
- Installation and Commissioning

Solution

Information Assurance: Security & Compliance

- Compliance: DoD Information Assurance Certification and Accreditation Process (DIACAP) Platform Information Technology (PIT)
 - Specific administrative processes and timelines
 - Interim Authority to Test (IATT), Interim Authority to Operate (IATO), Authority to Operate (ATO), etc.
 - Focus on identification and validation of security controls
 - Well defined deliverables that must be created
- Security
 - "Common sense" approach based on a deep understanding of hardware, software, and being deployed
 - "Bottom up" view of realistic assessment of threats, vulnerabilities, controls
 - Interpretation, adaptation, and refinement of processes and documents to Energy Management Systems

Information Assurance: Lessons Learned

- Engineering best practices provide a strong foundation for Information Assurance—knowing your system is half the battle
- Teamwork is critical with the solutions and customer teams:
 - Documentation and testing requirements must be identified as early as possible in the process
 - "Full stack" awareness from physical to application layer is critical for secure design, operation, and deployment
- IA can be the "glue" helping to build a functional system vs. the "roadblock" preventing deployment
 - IA personnel must understand Smart Grid/Control Systems Security in addition to "IT" Security
- Existing DoD (DIACAP) and Federal Information Security (FISMA) can (and are!) being applied to Energy Management Systems—comparable to NERC CIP

Thank you!

Questions?

